七年级数学下册《因式分解》知识点归纳湘教版

时间:01-13编辑:佚名 数学

【m.chuwe.cn - 出文网】

七年级数学下册《因式分解》知识点归纳湘教版

第三章 因式分解

1.因式分解

定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。 即:多项式几个整式的积 例:axbx

13131

x(ab) 3

因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。 2.因式分解的方法:

(1)提公因式法:

①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式

或多项式。

系数——取各项系数的最大公约数

字母——取各项都含有的字母

指数——取相同字母的最低次幂

例:12a3b3c8a3b2c36a4b2c2的公因式是

解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部

3232

分a3b3c,a3b2c3,a4b2c2都含有因式abc,故多项式的公因式是2abc.

②提公因式的步骤 第一步:找出公因式;

第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩

下的另一个因式。

注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多项式中第一项有负号的,要

先提取符号。

2233

例1:把12ab18ab24ab分解因式.

解析:本题的各项系数的最大公约数是6,相同字母的最低次幂是ab,故公因式为6ab。

2233

解:12ab18ab24ab

6ab(2a3b4a2b2)

例2:把多项式3(x4)x(4x)分解因式

解析:由于4x(x4),多项式3(x4)x(4x)可以变形为3(x4)x(x4),我们可以发现多项

式各项都含有公因式(x4),所以我们可以提取公因式(x4)后,再将多项式写成积的形式. 解:3(x4)x(4x) =3(x4)x(x4) =(3x)(x4)

例3:把多项式x22x分解因式

解:x22x=(x22x)x(x2) (2)运用公式法

定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

a.逆用平方差公式:a2b2(ab)(ab)

b.逆用完全平方公式:a22abb2(ab)2

3

3

2

2

c.逆用立方和公式:ab(ab)(aabb(拓展))

d.逆用立方差公式:a3b3(ab)(a2abb2(拓展))

注意:①公式中的字母可代表一个数、一个单项式或一个多项式。

②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项

式,可考虑完全平方公式。

例1:因式分解a214a49

2

解:a14a49=(a7)2

例2:因式分解a2a(bc)(bc) 解:a2a(bc)(bc)=(abc) (3)分组分解法(拓展)

①将多项式分组后能提公因式进行因式分解; 例:把多项式abab1分解因式

解:abab1=(aba)(b1)=a(b1)(b1)(a1)(b1) ②将多项式分组后能运用公式进行因式分解.

22

例:将多项式a2ab1b因式分解

22

222

22

解:a2ab1b

=(a2abb)1(ab)1(ab1)(ab1)

2x (4)十字相乘法(形如(pq)xpq(xp)(xq)形式的多项式,可以考虑运用此种方法)

222

方法:常数项拆成两个因数p和q,这两数的和pq为一次项系数

x2(pq)xpq

x2(pq)xpq(xp)(xq)

例:分解因式x2x30 分解因式x252x100 补充点详解 补充点详解

我们可以将-30分解成p×q的形式, 我们可以将100分解成p×q的形式, 使p+q=-1, p×q=-30,我们就有p=-6, 使p+q=52, p×q=100,我们就有p=2, q=5或q=-6,p=5。 q=50或q=2,p=50。

所以将多项式x2(pq)xpq可以分 所以将多项式x2(pq)xpq可以分 解为(xp)(xq) 解为(xp)(xq)

x

x5

x2

-6

x50

x2x30(x6)(x5)

3.因式分解的一般步骤:

x252x100(x50)(x2)

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明

确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。 一、 例题解析

提公因式法

提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法:

系数——取多项式各项系数的最大公约数;

字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂. 【例 1】 分解因式:

⑴15aab

2n1

10abba(n为正整数)

2n

⑵4a2n1bm6an2bm1(m、n为大于1的自然数)

【巩固】 分解因式: (xy)2n1(xz)(xy)2n2(yx)2n(yz),n为正整数.

【例 2】 先化简再求值,yxyxyxyx2,其中x2,y 

2

求代数式的值:(3x2)2(2x1)(3x2)(2x1)2x(2x1)(23x),其中x.

3

1. 2

22221

【例 3】 已知:bca2,求a(abc)b(cab)c(2b2c2a)的值.

33333

 公式法

平方差公式:a2b2(ab)(ab)

①公式左边形式上是一个二项式,且两项的符号相反; ②每一项都可以化成某个数或式的平方形式;

③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积. 完全平方公式:a22abb2(ab)2 a22abb2(ab)2 ①左边相当于一个二次三项式;

②左边首末两项符号相同且均能写成某个数或式的完全平方式;

分解因式:x3(xyz)(yza)x2z(zxy)x2y(zxy)(xza).

③左边中间一项是这两个数或式的积的2倍,符号可正可负;

④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定. 一些需要了解的公式:

a3b3(ab)(a2abb2) a3b3(ab)(a2abb2) (ab)3a33a2b3ab2b3 (ab)3a33a2b3ab2b3

1 2
【相关推荐文章】